If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-15x-638=0
a = 2; b = -15; c = -638;
Δ = b2-4ac
Δ = -152-4·2·(-638)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-73}{2*2}=\frac{-58}{4} =-14+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+73}{2*2}=\frac{88}{4} =22 $
| 7(-3z+31)=49 | | v−1/3v+1/3=1/6(v−32) | | 8x+3=7x+x+14 | | 4(7.6+4.3x)=123.28 | | n/8=n+3/10 | | -21+3x=6x+48 | | 4w=3w+50 | | 2(2x+4)=7x+7-3x+1 | | 62+-5=x | | 10x−(x+29)2x+6=x | | (2x+1)^2-(x+13)=3x^2-2x+2 | | -5+2x+-7x=35 | | 11x=8x=21 | | 18.1-1.6g=-2.6g | | 13x+9=14x=10 | | 1/5x+7/8=4x | | 7y-20=9y | | 0.2(12x-15)=0.3(14-4x) | | m-11=-m+19 | | 11(4p+4)-4p=4(70-7) | | 4.2(3.5-4.8n)=175.98 | | -18u-7=-7+8u | | -16^2+96t+80=0 | | 7(2e-1)−3=6+6e | | -10.1=w+5.4 | | -8x-188=135+9x | | X+50+2x-12=0 | | -94+15x=221+6x | | (2x+3)(4x+7)=200 | | 5=x-2=11 | | 1/6m=2500 | | 2(x-4)^2=-5 |